Draft

Draft

Multi-Tenant Tenanting in OpenStack

Jorge L Williams <j orge. w | | i ans@ ackspace. con®
Ziad N Sawalha <zi ad. sawal ha@ ackspace. conp
Khaled Hussein <khal ed. hussei n@ ackspace. conp

Abstract

As acloud computing platform, OpenStack must support the concept of multi-tenancy. A common approach
to organizing resources by 'tenant' across services is needed to be able to correlate usage tracking, auditing,
authorization, and so forth. Within each multi-tenant service, the ability to identify each tenant's resourcesis also

key.

The exact definition of atenant and what it maps to in an operator's business model is unpredictable. Some operators
will map tenants to customes, others to tenants (whatever tenant means for them), and others yet may map them to
acost center, and environment (production, staging, test, dev), etc... This document explains the rational e behind

the lightweight standard for service devel opers adopted by OpenStack to implement tenancy and resource grouping
without a-priori knowledge of billing, accountinging, and customer models and processes specific to the operator of
an OpenStack deployment.

Table of Contents

RaLiONaI€ 8N GOBIS ...ttt ettt et et a et 1
SPECITICALION OVEIVIEIW ...ttt et e e e et e et et et e e et e e et e e ean e aeannas 1
TeNANE LITECYCIE . e e e e e 1
F o 011 g AN PP 2
QUESLIONS @NA ANSIWETS ...eeueeieiie i ee et e e et et e e e e e e e e e e et e et e et e e et e aa e et e et e eaaeen e enraanaesneeen 10
e (= 1= 1o S PP UUPTR PPN 10

Rationale and Goals

Building multi-tenant servicesis complicated and often involves knowledge of business processesthat vary
from one organization to another. We propose a method of organizing resourcesthat allows multi-tenancy
to beimplemented on top of OpenStack services. By doing so weintroduce a separation of concern between
operators and service developers. Service devel opers offer management to tenants. From their perspective
tenants are simply collection of resources. Operators manage tenants that may be associated with one or
more accounts, customers, departments, or whateve their business model looks like. This approach lowers
barriers to service developers by allowing them to develop services without a-priori knowledge of billing
and accounting processes of the organization in which the services are deployed. Likewise, organizations
will begiven flexibility in the manner in which they deploy and offer OpenStack services. Inthisblueprint,
we define a simple tenant admin API that facilitates and standardizes on this approach.

Specification Overview

Tenant Lifecycle

From the perspective of aservice developer atenant ID issimply an arbitrary string that is used to organize
resources. We propose that a string be used as atop level resource collection after the version identifier: /

Draft

Multi-Tenant Tenanting in OpenStack Draft

ver si on/t enant | d. Placing the tenant ID as atop level container dictates that all client requests are
automatically associated with a tenant. Requests to create tenants or move resources between tenants are
received viaan admin APl which is described in detail in the next section. Developers are responsible for
ensuring that all usage metrics contain the tenant ID string.

Service operators, on the other hand, are responsible for organizing resources around tenants for the
purposes of billing and authorization. Operators use tenant | Dsto help organize serviceresources. Thethen
expose service endpointsto their users and amethod of tracking the tenant 1D (Example, they may provide
their tenants with APl endpoints that contain the tenant ID embedded in the URI or, as an alternative,
may track the tenant ID through the use of an authentication mechanism like tokens from OpenStack's
Identity Service, called Keystone). The operator can then collect usage logs from the service and aggregate
necessary usage metrics in order to charge back usage for the tenant to the appropriate entity (customer,
account, department, cost center, etc...).

The relationships among tenants, operators, and services are illustrated in detail in the figure below.

Figure 1. Multi-Tenancy Overview

OpenStack Multi-Te n aAc¢ounting Model - Example Deployment

Consumers

Operator’'s custo

accesses service .
using their assigpeFOST V1.0/T1000/Widget

tenant ‘

8

Tenant B

Consumer signs up.
(Operator appliefs
their own model
organizing tenants)

v
sy, OPe"S1ack Deployment

Public/Consumer Network

Private/Management Network Private/Management Network

SERVICE
Operator sorui »
ervice provides

”1000_ functionality and
Operator generates and Operator return Widget1 tracks usage at
maintains tenant strings a tenantinformation Widget2 resource and tenant
mappings between accounts to consumer Etc... level
and tenants

Operator provisions
tenants to OpenStad

&)
services using CRU

Te n an tAazount Mapping operationsA chmRh

A c c o u rTemant 7@4 7777777777 >
) - - PUT /v1.0/T1000

AccountTiA00 Operator calculatds
usage and charge, '

U

Service generates raw usgge,
audit logs providing, at a
minimum, the associated
| tenant id

- e - .- .- - .- -)

finds account, an

T 0 QAR performs chargeback -l Raw Logs
Y waCCOUTZ D a t Teen aResource Method MetricA
Accouiée Usage Cha T T ST Tt
ASEORLE haks S ‘ ***** - — — 1201001Ma00 Wi dget1 POST 10.00
AccountT A0 Q0000 $99.90]

Admin API

A service APl isan API that's made available to most clients— in most casesit isthe public API that users
consume. In contrast, an admin API is an implementation of the service APl with additional callsto allow
for the management and maintenance of the service. The admin API is consumed strictly by operators.
Callswhose effects span multiple tenants should be placed in an admin API. Admin APIsSHOUL D NOT
be exposed viapublic endpointsand SHOUL D havetighter security constraintsthan those of service APIs.
We recommend that admin API users and service API users authenticate against separate authentication
systems. All OpenStack services MUST implement an admin API.

Draft

Multi-Tenant Tenanting in OpenStack Draft

@ Note

The requirement for an additiona admin APl does not necessarily dictate that two
separate implementations of the APl be written. Service teams may opt to write a single
implementation of the APl and exposeit viatwo separate endpoints: apublic endpoint and an
admin endpoint. Alternatively, they may write one endpoint that exposes the administrative
API callsto appropriately authorized clients. Inthe public endpoint, reverse proxy filtersmay
be employed to cull admin calls before they reach the service implementation. A different
authentication component may also be used at each endpoint to interact with separate
authentication systems.

In the following sections, we propose a set of calls that MUST be implemented by admin APIs in
OpenStack and an optional set that SHOUL D be implemented. Together these calls alow for a simple
and consistent admin API for the management of tenantsin OpenStack.

Required Operations

The following operations MUST be implemented by OpenStack services and MUST be made available
viathe admin API. At their discretion, service operators MAY provide public accessto GET and HEAD
operationsviathe service API. The PUT and DEL ETE calls, however, SHOUL D be accessible from the
admin API only.

Get Tenant
Verb URI Description
GET /ver si on/t enant | d Get Tenant.

Normal Response Code(s): 200, 203, 204
Error Response Code(s): 404, 410, others ...

Services are not required to provide a representation of atenant on a GET request. If arepresentation is
returned, it SHOUL D provide information about the tenant along with tenant metadata. Additionally, the
representation MAY contain alist of top level tenant resources. The actual format of the representation
is service-specific.

If a service returns a tenant representation, it should return either a response code of 200 (Okay) or 203
(Non-Authoritative Information) if the request is cached. If aservice does not return arepresentation, then
it MUST return 2204 (No Content). Generally, aresponse code in the 200s signifies that the tenant exists
and isvalid. A 404 (Not Found) signifies that the tenant does not exist and a 410 (Gone) means that the
tenant has recently been marked for deletion, is currently unavailable, and may be recoverable. Services
may provide an additional operation to recover arecently removed tenant.

Get Tenant Metadata

Verb URI Description
HEAD Iversi on/tenant | d Get Tenant Metadata

Normal Response Code(s): 204

Error Response Code(s): 404, 410, others ...

Draft

Multi-Tenant Tenanting in OpenStack Draft

A HEAD operation MAY return metadata for atenant. If it does, it MUST return the same metadata that
would be returned viaa GET operation. The response to thiscall MUST only contain HTTP headers. As
with GET requests, a 204 (No Content) signifies that the tenant exists and is valid. A 404 (Not Found)
signifies that the tenant does not exist and a 410 (Gone) means that the tenant has recently been marked
for deletion, is currently unavailable, and may be recoverable. Again, services may provide an additional
operation to recover arecently removed tenant. The HEAD operation may be used asashorthand for GET
in cases where the service returns a representation document but the client is not interested in it.

Create a tenant

Verb URI Description
PUT /versionftenantld Create or Modify atenant.

Normal Response Code(s): 201, 202,
Error Response Code(s): 409, others ...

A PUT operation can beused to create or (optionally) modify atenant. If aservice providesarepresentation
for atenant, the representation SHOUL D be included as part of the PUT request and it SHOUL D match
the representation returned by GET. One possible use of a tenant representation is to keep track of a
tenant's tier in cases where the service offers different levels of performance at different tiers. Here, an
operator may create a new tenant and assign it to atier with asingle PUT request. The operator may also
update atenant'stier by performing additional PUT s on the tenant. On success, a 201 (Created) should be
returned when the tenant is created and a 202 (Accepted) should be returned when the tenant is modified.

In cases where the tenant representation offers a list of tenant resources, the PUT operation SHOUL D
NOT be used to add resources to or remove resources from the tenant. Services MUST ensure that PUT
requests are idempotent. If atenant does not have a representation, or the representation is not updatable,
a 409 (Conflict) may be returned to indicate that a tenant with the given ID has already been created and
may not be updated.

Note that a PUT operation is used to create a new tenant with a tenant 1D. This means that the operator is
in complete control of the tenant ID value and that the tenant ID is not generated by the service. That said,
the following are the properties of an tenant ID that service implementers can rely on.

1. Thetenant ID isastring in the UTF-8 character set.

2. The UTF-8 string will not be greater than 255 character units and it will not be empty.

3. The string may contain any character other than the path separator: / .

4. The UTF-8 string will be properly encoded in the request URL according to the encoding rules defined
in RFC 1738 [1]. Services MAY reject improperly encoded URLS.

An OpenStack service should make no assumptions about the tenant ID other than those listed above. As
aresult, servicesMUST set aside 255 character unitsfor storing tenant 1Ds. Services should also consider
long tenant 1Ds when imposing limits on the size of arequest URL.

The following are examples of tenant IDs and their encoded URLS:

Draft Multi-Tenant Tenanting in OpenStack Draft

Example 1. Example tenant 1Ds

tenantld Sample Encoded URL Valid

12345 https://widgets.openstack.com/v1.0/12345/widgets Yes

Bob's Tenant | https://widgets.openstack.com/v1.0/Bob's%20Tenant/widgets Yes

S 00A[] https://widgets.openstack.com/v1.0/%E2%88%91%E2%88%9E Yes
%E2%688%86%E2%688%8F/widgets

resel:sub:acct | https://widgets.openstack.com/v1.0/resel 1:sub2:acct3/widgets Yes

resel\sub\acct | https://widgets.openstack.com/v1.0/resel 1\sub2\acct3/widgets Yes

resel/sub/acct | https://widgets.openstack.com/v1.0/resel 1/sub2/acct3/widgets No, using path

separator.

https://widgets.openstack.com/v1.0//widgets No, empty.

The restrictions placed on tenant IDs SHOUL D be described in the admin APl documentation and MAY

also be documented in the admin WADL. An example WADL isillustrated below.

Example 2. Tenant ID Sample WADL Definition

<?xm version="1. 0" encodi ng="UTF-8"?>

<application xm ns="http://wadl . dev. java. net/ 2009/ 02"

xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema"

xm ns: w="http://w dget . openst ack. conf wi dget/ api /v1l. 0">

<gr anmar s>

<schema

el ement For nDef aul t =" qual i fi ed"

attri but eFor nDef aul t ="unqual i fi ed"
t ar get Namespace="htt p: / / wi dget . openst ack. conf wi dget / api / v1. 0"
xm ns="http://ww. w3. or g/ 2001/ XM_Schema" >

<si npl eType name="Tenant| D"'>

<restriction base="xsd:string">

<pattern value="[*/]+" />0

</restriction>

</ si npl eType>
</ schema>
</ gr ammar s>

<resources base="https://w dget. openst ack. com’ wi dget/api/vl.0">
<resource path="{tenantld}">

<param nane="t enant | d" style="tenplate" type="w TenantlD'/> @

</ resour ce>
</ resour ces>
</ application>

Draft

Multi-Tenant Tenanting in OpenStack Draft

© Note that the tenant ID pattern is very simple. Tenant IDs must contain one or more characters not
matching the path separator: / .

® Herewedefinet enant | d asaURI template parameter of type TenantID. The fact that we define
the TenantID type so that it restricts the use of the path separator character is redundant in this case
because template parameters do not allow values with path separators. Nonetheless, we define the
TenantID typein order to be explicit and in case the type is used elsewhere.

Remove a tenant

Verb URI Description
DELETE |/version/tenantld Remove atenant.

Normal Response Code(s): 204
Error Response Code(s): 404, 410, others ...

A DELETE operation is used to remove atenant. atenant's resources SHOUL D be deleted after atenant
has been removed. That said, resources SHOUL D remain recoverable and in a deleted state for a period
of time before they are actually removed. This prevents data loss in cases involving human error. The
DELETE operation SHOULD always return asynchronously. On success it should return a 204 (No
Content). The operation should return a 404 (Not Found) if the tenant does not exist and a 410 (Gone) if
the tenant has already been marked for deletion and is still in arecoverable state. Services may provide an
additional operation to recover tenants that have been marked for deletion but have not yet been removed.

Optional Operations

The following operations SHOULD be implemented by OpenStack services, but it is not a strict
requirement that services support them. The operations involve moving resources from one tenant to
another. There are anumber of use cases where such moves are necessary, and the operations below allow
these use cases to be implemented in an efficient manner. If a service team should decide not to include
support for thefollowing callsit isrecommended that, at the very least, amanual operational processexists
that provides the ability to transfer resources between tenants.

Move a Resource

Verb URI Description

POST /ver si on/t enant | d/path/to/resource/action/ |Move a Resource
move?dest =t enant | d

Normal Response Code(s): 303, 301
Error Response Code(s): 404, 410, others ...

A POST operation on a move action URL of a resource (.../path/to/resource/action/move) causes the
resource specified by the path to move to the tenant in the dest URL parameter. The operation does not
require a content body. On success, the service should return a 303 (See Other) withalLocat i on header
pointing to the resource's new home. The service should respond with a 404 (Not Found) if the resource
does not exist or 410 (Gone) if the resource has been recently deleted. Additionally, a service may respond
with a 301 (Moved Permanently) if the resource has already been moved. In this case, the Locat i on
header should point to the move action URL in the new resource location.

After the resource has been moved a service may respond with either a404 (Not Found) or a 301 (Moved
Permanently) to aGET request on theresourceitself (.../path/to/resource). The 301 response must contain
alLocat i on header with an URL pointing to the resource's new location.

Draft Multi-Tenant Tenanting in OpenStack Draft

Move all Resources

Verb URI Description
POST Iver si on/t enant | d/action/ Moves all resources into a destination
move?dest =t enant | d tenant.

Normal Response Code(s): 204, 202
Error Response Code(s): 404, 410, others ...

A POST operation on a move action URL of atenant (/ver si on/t enant | d/action/move) causes all
resources in that tenant to move to the tenant specified by the dest URL parameter. This operation is
very similar to the operation described above, except that it moves all resources in the tenant instead of a
singleresource. It isimportant to note that the tenant MUST NOT be del eted automatically after resources
have been moved. Instead, an operator must explicitly issueaDEL ETE on the tenant. On success, the call
should return a 303 (See Other) with aLocat i on header pointing to the destination tenant. The service
should respond with a 404 (Not Found) if the tenant does not exist or 410 (Gone) if the tenant has been
recently deleted. A service may respond with either a 404 (Not Found) or a 301 (Moved Permanently) on
aGET request on apreviously moved resource. The 301 response must containalLocat i on header with
an URL pointing to the resource's location in the new tenant.

Ensuring Consistency

The move operations above assume that resources are logically, and not physically, organized into tenants.
In this case, move operations are virtual and can occur without the need to ensure consistency between
resources as they move from one tenant to another. There may be cases, however, where tenants provide
a physical organization of resources. For example, tenants may be placed in different service tiers and
the tiers may be distributed among different sets of nodesin a cluster. Here, resources must be physically
moved from one nodeto another, and operators must be assured that aresourceisin aconsistent state before
it can be moved. The operations below allow for consistent moves by utilizing a move action resource.

Get a Move Action

Verb URI Description

GET Iver si on/t enant | d/path/to/resource/action/ | Get resource move action.
move?dest =t enant | d

GET Iver si on/t enant | d/action/ Get dl resource move action.
move?dest =t enant | d

Normal Response Code(s): 200, 203
Error Response Code(s): 404, 410, others ...

A move action helps coordinate states as resources are moved from one tenant to another. Move actions
must be acquired in caseswhere operatorswish to ensure consi stency between moves. An operator acquires
amove action by performing a GET on the move action URL of either a specific resource (.../path/to/
resource/action/move) or of an entiretenant (/ver si on/t enant | d/action/move). The destination tenant
of the move must be specified in the dest URL parameter. An example request isillustrated below.

Example 3. Get Move Action Request

GET /v1.0/17776666/ acti on/ nove?dest =176625343 HTTP/ 1. 1
Host: service. openst ack. com

Draft

Multi-Tenant Tenanting in OpenStack

Draft

Example 4. Get Move Action Response (Full)

HTTP/ 1.1 200 Okay

Date: Mon, 12 Nov 2010 15:55:01 GMI

Cont ent - Type: application/xm ; charset=UTF-8
ETag: "d8a5179a69519b32del2cad41705edd694790f f c"

<?xm version="1.0" encodi ng="UTF-8"?>

<nmove xm ns="http://service.openstack. con acti ons"
dest ="176625343" >
<t enant s>
<tenant id="17776666">

</t enant >
<t enant id="176625343">

</t enant >
</t enant s>
<r esour ces>
<resource id="1">

</resour ce>
<resource id="2">

</resour ce>

</resour ces>
</ nove>

The response to the move action request is service-specific. The purpose of the response is to allow
operators to confirm resource state before a move is requested. Thus the response MUST contain
information about the state of resources and tenants that are affected by the move. An entity tag (Et ag)
header MUST beincluded in theresponse. The header M UST contain aquoted opague string that uniquely
identifies the response. In the example above we use a SHA1 digest of the response text. There may be
cases where the number of resources affected by the move is very large. In these cases, the response
SHOULD NOT contain alist of al resources affected, but rather it SHOUL D contain atag that uniquely
identifies the current state of the affected resources. The response SHOUL D also contain metadatathat is

common to all resources affected by the move. Thisisillustrated in the example below.

Draft Multi-Tenant Tenanting in OpenStack Draft

Example 5. Get M ove Action Response (Tagged)

HTTP/ 1.1 200 Ckay

Date: Mon, 12 Nov 2010 15:55:01 GMTI

Cont ent - Type: application/xm ; charset=UTF-8
ETag: "50d935685f c4d998e202f 44694371875d4df ebb7"

<?xm version="1.0" encodi ng="UTF-8"?>

<nmove xnml ns="http://service.openstack.con acti ons"
dest ="176625343" >
<t enant s>
<tenant id="17776666">

</t enant >
<t enant id="176625343">

</t enant >

</t enant s>
<resources tag="f 152f 9be36f 69f 0b162b32f e2beed8c61b99e69b"

si ze="10000" total -usage="2.5TB" />
</ nove>

Note that the tag in the content of the message is different from the one supplied via the ETag. The
ETag uniquely identifies the move action response. The tag in the content identifies the state of all of
the resources affected. Conceptually, one can think of it as the sum of all of the ETags of the affected
resources. It is aso important to note that a change in the tag will cause the ETag to change.

On success, a request for a move action should return a response code of 200 (Okay) or 203 (Non-
Authoritative Information) if the request is cached. Services should respond with a404 (Not Found) if the
tenant or resources does not exist. A return code of 410 (Gone) signifies that the tenant has been recently

deleted.

Conditional Move

Verb URI Description

POST /ver si on/t enant | d/path/to/resource/action/ | Perform a conditional move operation
move?dest =t enant | d on aresource.

POST Iver si on/t enant | d/action/ Perform a conditional move operation
move?dest =t enant | d on all resources.

Normal Response Code(s): 200, 203

Error Response Code(s): 404, 410, 412, others ...

Draft Multi-Tenant Tenanting in OpenStack Draft

Conditional moves work exactly like unconditional move requests except that an | f - Mat ch header
should be included containing the ETag of the move action. An example request isillustrated below.

Example 6. Conditional M ove Request

POST /v1.0/ 17776666/ acti on/ nove?dest =176625343 HTTP/ 1. 1
Host: service. openst ack. com

| f-Match: "d8a5179a69519b32del2cad41705edd694790f f c"
Cont ent - Type: appli cati on/ xm

Here the move should fail with a 412 (Precondition Failed) if any change in state has occurred between
GET request and the POST request.

Questions and Answers

1 Why go through the trouble of obtaining a move action? Why not simply fail a move request if a
resourceisin an unmovable state?

If a service can detect an unmovable state then it should certainly fail the move operation. That
said, whether or not a resource is movable depends on the specific deployment. For example, an
operator may have a rule that tenants are only allowed to have 100 resources. The move action
request allows operators to enforce the rule on moves.

References

[1] T Berners-Lee. L Masinter. M McCahill. Uniform Resource Locators (URL). http://tools.ietf.org/html/rfc1738 .

10

http://tools.ietf.org/html/rfc1738

	Multi-Tenant Tenanting in OpenStack
	Table of Contents
	Rationale and Goals
	Specification Overview
	Tenant Lifecycle
	Admin API
	Required Operations
	Get Tenant
	Get Tenant Metadata
	Create a tenant
	Remove a tenant

	Optional Operations
	Move a Resource
	Move all Resources
	Ensuring Consistency
	Get a Move Action
	Conditional Move

	Questions and Answers
	References

